Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study.

نویسندگان

  • Yu Zhao
  • Xiaojun Wu
  • Jinlong Yang
  • Xiao Cheng Zeng
چکیده

Two-dimensional (2D) hexagonal boron-nitride oxide (h-BNO) is a structural analogue of graphene oxide. Motivated by recent experimental studies of graphene oxide, we have investigated the chemical oxidation of 2D h-BN sheet and the associated electronic properties of h-BNO. Particular emphasis has been placed on the most favorable site(s) for chemisorption of atomic oxygen, and on the migration barrier for an oxygen atom hopping to the top, bridge, or hollow site on the h-BN surface, as well as the most likely pathway for the dissociation of an oxygen molecule on the h-BN surface. We find that when an oxygen atom migrates on the h-BN surface, it is most likely to be over an N atom, but confined by three neighbor B atoms (forming a triangle ring). In general, chemisorption of an oxygen atom will stretch the B-N bond, and under certain conditions may even break the B-N bond. Depending on the initial location of the first chemisorbed O atom, subsequent oxidation tends to form an O domain or O chain on the h-BN sheet. The latter may lead to a synthetic strategy for the unzipping of the h-BN sheet along a zigzag direction. A better understanding of the oxidation of h-BN sheet has important implications for tailoring the properties of the h-BN sheet for applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study.

A single metal atom stabilized on two dimensional materials (such as graphene and h-BN) exhibits extraordinary activity in the oxidation of CO. The oxidation of CO by molecular O2 on a single cobalt atom embedded in a hexagonal boron nitride monolayer (h-BN) is investigated using first-principles calculations with dispersion-correction. It is found that the single Co atom prefers to reside in a...

متن کامل

Physics and chemistry of oxidation of two-dimensional nanomaterials by molecular oxygen

The discovery of graphene has inspired extensive interest in two-dimensional (2D) materials, and has led to synthesis/growth of additional 2D materials, generally referred to as ‘Beyond Graphene’. Notable among the recently discovered exotic 2D materials are group IV elemental monolayers silicene and germanene, group V elemental monolayer phosphorene, and binary monolayers, such as hexagonal bo...

متن کامل

Evidence for active atomic defects in monolayer hexagonal boron nitride: a new mechanism of plasticity in two-dimensional materials.

We report the formation and motion of 4|8 (square-octagon) defects in monolayer hexagonal boron nitride (h-BN). The 4|8 defects, involving less-favorable B-B and N-N bonds, are mobile within the monolayer at high sample temperature (∼ 1000 K) under electron beam irradiation. Gliding of one or two atomic rows along the armchair direction is suggested to be the origin of the defect motion. This r...

متن کامل

g-B3N3C: a novel two-dimensional graphite-like material

: A novel crystalline structure of hybrid monolayer hexagonal boron nitride (BN) and graphene is predicted by means of the first-principles calculations. This material can be derived via boron or nitrogen atoms which are substituted by carbon atoms evenly in the graphitic BN with vacancies. The corresponding structure is constructed from a BN hexagonal ring linking an additional carbon atom. Th...

متن کامل

Properties, Application and Synthesis Methods of boron nitride Powder: A Review

h-BN is a multipurpose ceramic material, with exceptional properties and a wide area of application in industry. It is structurally similar to graphite and it resists oxidation to higher temperatures than graphite. It is used in powder form as a mold release agent in metal casting, as a high temperature lubricant or even in cosmetics. hBN can be shaped by hot-pressing and is used as molds or cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 16  شماره 

صفحات  -

تاریخ انتشار 2012